Home page of Théophile Chaumont-Frelet

theophile.chaumont (at) inria.fr
Junior researcher in the Inria project-team Atlantis
Curriculum Vitae


  • Partial differential equations
  • Numerical Analysis
  • Finite element methods
  • Discontinuous Galerkin methods
  • Multiscale methods
  • High performance computing
  • Wave propagation
  • Geophysics
  • Electromagnetism
  • Nanophotonics
  • Current postdocs and PhD students

    Former postdocs and PhD students


    1. T. Chaumont-Frelet, M.J. Grote, S. Lanteri and J.H. Tang,
      A controllability method for Maxwell's equations.
      SIAM J. Sci. Comput. 44 no. 6, pp A3700--A3727. 2022. preprint. doi.
    2. T. Chaumont-Frelet and S. Nicaise,
      An analysis of high-frequency Helmholtz problems in domains with conical points and their finite element discretisation.
      Comput. Meth. Appl. Math.. 2022. preprint. doi.
    3. T. Chaumont-Frelet and P. Vega,
      Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations.
      SIAM J. Numer. Anal. 60 no. 4, pp 774--1798. 2022. preprint. doi.
    4. T. Chaumont-Frelet and P. Vega,
      Frequency-explicit approximability estimates for time-harmonic Maxwell's equations.
      Calcolo 59, pp article number: 22. 2022. preprint. doi.
    5. T. Chaumont-Frelet, D. Gallistl, S. Nicaise and J. Tomezyk,
      Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers.
      Commun. Math. Sci. 20 no. 1, pp 1--52. 2022. preprint. doi.
    6. T. Chaumont-Frelet, A. Ern and M. Vohralík,
      Stable broken H(curl) polynomial extensions and p-robust a posteriori error estimates by broken patchwise equilibration for the curl--curl problem.
      Math. Comp. 91, pp 37--74. 2022. preprint. doi.
    7. T. Chaumont-Frelet, A. Ern, S. Lemaire and F. Valentin,
      Bridging the multiscale hybrid-mixed and multiscale hybrid high-order methods.
      ESAIM Math. Model. Numer. Anal. 56 no. 1, pp 261--285. 2022. preprint. doi.
    8. T. Chaumont-Frelet, S. Lanteri and P. Vega,
      A posteriori error estimates for finite element discretizations of time-harmonic Maxwell's equations coupled with a non-local hydrodynamic Drude model.
      Comput. Meth. Appl. Engrg. 385, pp 114002. 2021. preprint. doi.
    9. T. Chaumont-Frelet and M. Vohralík,
      Equivalence of local-best and global-best approximations in H(curl).
      Calcolo 58. 2021. preprint. doi.
    10. T. Chaumont-Frelet and A. Ern and M. Vohralík,
      On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation.
      Numer. Math. 148, pp 525--573. 2021. preprint. doi.
    11. T. Chaumont-Frelet and B. Verfürth,
      A generalized finite element method for problems with sign-changing coefficients.
      ESAIM Math. Model. Numer. Anal. 55 no. 3, pp 939--967. 2021. preprint. doi.
    12. T. Chaumont-Frelet, A. Ern and M. Vohralík,
      Polynomial-degree-robust H(curl)-stability of discrete minimization in a tetrahedron.
      C. R. Math. Acad. Sci. Paris 358 no. 9--10, pp 1101--1110. 2020. preprint. doi.
    13. V. Darrigrand, D. Pardo, T. Chaumont-Frelet, I. Gomez-Revuelto and L.E. Garcia-Castillo,
      A painless automatic hp-adatptive strategy for elliptic probems.
      Finite Elem. Anal. Des. 178, pp 103424. 2020. preprint. doi.
    14. T. Chaumont-Frelet, S. Nicaise and J. Tomezyk,
      Uniform a priori estimates for elliptic problems with impedance boundary conditions.
      Comm. Pure Appl. Anal. 19 no. 5, pp 2445--2471. 2020. preprint. doi.
    15. T. Chaumont-Frelet and F. Valentin,
      A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains.
      SIAM J. Numer. Anal. 58 no. 2, pp 1029--1067. 2020. preprint. doi.
    16. T. Chaumont-Frelet and S. Nicaise,
      Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems.
      IMA J. Numer. Anal. 40, pp 1503--1543. 2020. preprint. doi.
    17. T. Chaumont-Frelet, M. Shahriari and D. Pardo,
      Adjoint-based formulation for computing derivaties with respect to bed boundary positions in resistivity geophysics.
      Comput. Geosci. 23, pp 583--594. 2019. preprint. doi.
    18. T. Chaumont-Frelet,
      Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers.
      Calcolo 56 no. 49. 2019. preprint. doi.
    19. T. Chaumont-Frelet and S. Nicaise,
      High-frequency behaviour of corner singularities in Helmholtz problems.
      ESAIM Math. Model. Numer. Anal. 5, pp 1803--1845. 2018. preprint. doi.
    20. T. Chaumont-Frelet, D. Pardo and Á. Rodríguez-Rozas,
      Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids.
      Comput. Geosci. 22, pp 1161--1174. 2018. preprint. doi.
    21. T. Chaumont-Frelet, S. Nicaise and D. Pardo,
      Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics.
      SIAM J. Numer. Anal. 56 no. 4, pp 2288--2321. 2018. preprint. doi.
    22. H. Barucq, T. Chaumont-Frelet and C. Gout,
      Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation.
      Math. Comp. 86 no. 307, pp 2129--2157. 2017. preprint. doi.
    23. T. Chaumont-Frelet,
      On high order methods for the heterogeneous Helmholtz equation.
      Comp. Math. Appl. 72, pp 2203--2225. 2016. preprint. doi.
    24. H. Barucq, T. Chaumont-Frelet, J. Diaz and V. Péron,
      Upscaling for the Laplace problem using a discontinuous Galerkin method.
      J. Comput. Appl. Math. 240, pp 192--203. 2013. preprint. doi.


    1. T. Chaumont-Frelet, A. Moiola and E. Spence,
      Explicit bounds for the high-frequency time-harmonic Maxwell equations in heterogeneous media.
    2. A. Modave and T. Chaumont-Frelet,
      A hybridizable discontinuous Galerkin method with characteristic variables for Helmholtz problems.
    3. T. Chaumont-Frelet, D. Paredes and F. Valentin,
      Flux approximation on unfitted meshes and application to multiscale hybrid-mixed methods.
    4. M. Bernkopf, T. Chaumont-Frelet and J.M. Melenk,
      Wavenumber-explicit stability and convergence analysis of hp finite element discretizations of Helmholtz problems in piecewise smooth media.
    5. T. Chaumont-Frelet,
      Duality analysis of interior penalty discontinuous Galerkin methods under minimal regularity and application to the a priori and a posteriori error analysis of Helmholtz problems.
    6. T. Chaumont-Frelet, V. Dolean and M. Ingremeau,
      Efficient approximation of high-frequency Helmholtz solutions by Gaussian coherent states.
    7. T. Chaumont-Frelet and M. Ingremeau,
      Decay of coefficients and approximation rates in Gabor Gaussian frames.
    8. T. Chaumont-Frelet and M. Vohralík,
      A stable local commuting projector and optimal hp approximation estimates in H(curl).
    9. T. Chaumont-Frelet and M. Vohralík,
      Constrained and unconstrained stable discrete minimizations for p-robust local reconstructions in vertex patches in the De Rham complex.
    10. T. Chaumont-Frelet and P. Vega,
      Frequency-explicit a posteriori error estimates for discontinuous Galerkin discretizations of Maxwell's equations.
    11. T. Chaumont-Frelet,
      Asymptotically constant-free and polynomial-degree-robust a posteriori estimates for space discretizations of the wave equation.
    12. T. Chaumont-Frelet and E. Spence,
      Scattering by finely-layered obstacles: frequency-explicit bounds and homogenization.
    13. T. Chaumont-Frelet,
      A simple equilibration procedure leading to polynomial-degree-robust a posteriori error estimators for the curl-curl problem.
    14. T. Chaumont-Frelet and M. Vohralík,
      p-robust equilibrated flux reconstruction in H(curl) based on local minimizations. Application to a posteriori analysis of the curl-curl problem.
    15. G. Nehmetallah, T. Chaumont-Frelet, S. Descombes and S. Lanteri,
      A postprocessing technique for a discontinuous Galerkin discretization of time-dependent Maxwell's equations.