T. Chaumont-Frelet
Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers.
Accepted for publication in Calcolo on the 06/11/2019
(preprint)
T. Chaumont-Frelet, S. Nicaise and J. Tomezyk
Uniform a priori estimates for elliptic problems with impedance boundary conditions.
Accepted for publication in Comm. Pure Appl. Math. on the 18/09/2019.
(preprint)
T. Chaumont-Frelet and S. Nicaise
Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems.
Accepted for publication in IMA J. Numer. Anal. on the 18/03/2019.
(preprint)
T. Chaumont-Frelet, M. Shahriari and D. Pardo
Adjoint-based formulation for computing derivatives with respect to bed boundary positions in resistivity geophysics.
Comput. Goesci. 23, pp 583--594, 2019.
(preprint)
T. Chaumont-Frelet and S. Nicaise.
High-frequency behaviour of corner singularities in Helmholtz problems.
ESAIM: Math. Model. Numer. Anal. 52, pp 1803-1845. 2018.
(preprint)
T. Chaumont-Frelet, D. Pardo and A. Rodriguez-Rozas.
Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids.
Comput. Goesci. 22, pp 1161--1174, 2018.
(preprint)
T. Chaumont-Frelet, S. Nicaise and D. Pardo.
Finite element approximation of electromagnetic fields using non-fitting meshes for geophysics.
SIAM J. Numer. Anal. 56, pp 2288-2321. 2018.
(preprint)
H. Barucq, T. Chaumont-Frelet and C. Gout. Stability analysis of heterogeneous Helmholtz
problems and finite element solution based on propagation media approximation.
Math. Comp. 86, pp 2129-2167. 2017.
(preprint)
T. Chaumont-Frelet.
On high order methods for the heterogeneous Helmholtz equation.
Comput. Math. Appl. 72, pp 2203-2225. 2016.
(preprint)
H. Barucq, T. Chaumont-Frelet, J. Diaz and V. Péron.
Upscaling for the Laplace problem using a discontinuous Galerkin method.
J. Comput. Appl. Math. 240, pp 192-203. 2013.
Prepublications
T. Chaumont-Frelet, A. Ern and M. Vohralík
On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation.
Submitted to Numer. Math. on the 31/07/2019
(preprint)
T. Chaumont-Frelet and F. Valentin
A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains.
Submitted to SIAM J. Numer. Anal. on the 15/04/2019
(preprint)
V. Darrigrand, D. Pardo, T. Chaumont-Frelet, I. Gomez-Revuelto, L.E. Garcia-Castillo
A painless automatic hp-adatptive strategy for elliptic probems.
Submitted to Comp. Meth. Appl. Mech. Engrg. on the 21/02/2019
(preprint)
T. Chaumont-Frelet, D. Gallistl, S. Nicaise and J. Tomezyk
Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers.
Submitted to Comm. Math. Sci. on the 28/02/2019.
(preprint)