Home page of Théophile Chaumont-Frelet

theophile.chaumont (at) inria.fr
Junior researcher in the Inria project-team Atlantis
Curriculum Vitae


  • Partial differential equations
  • Numerical Analysis
  • Finite element methods
  • Discontinuous Galerkin methods
  • Multiscale methods
  • High performance computing
  • Wave propagation
  • Geophysics
  • Electromagnetism
  • Nanophotonics
  • Current postdocs and PhD students


    1. V. Darrigrand, D. Pardo, T. Chaumont-Frelet, I. Gomez-Revuelto, L.E. Garcia-Castillo A painless automatic hp-adatptive strategy for elliptic probems. Accepted for publication in Finite Elem. Anal. Des. on the 24/05/2020 (preprint)
    2. T. Chaumont-Frelet and F. Valentin A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains. Accepted for publication in SIAM J. Numer. Anal. on the 16/12/2019 (preprint)
    3. T. Chaumont-Frelet Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers. Accepted for publication in Calcolo on the 06/11/2019 (preprint)
    4. T. Chaumont-Frelet, S. Nicaise and J. Tomezyk Uniform a priori estimates for elliptic problems with impedance boundary conditions. Accepted for publication in Comm. Pure Appl. Math. on the 18/09/2019. (preprint)
    5. T. Chaumont-Frelet and S. Nicaise Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. Accepted for publication in IMA J. Numer. Anal. on the 18/03/2019. (preprint)
    6. T. Chaumont-Frelet, M. Shahriari and D. Pardo Adjoint-based formulation for computing derivatives with respect to bed boundary positions in resistivity geophysics. Comput. Goesci. 23, pp 583--594, 2019. (preprint)
    7. T. Chaumont-Frelet and S. Nicaise. High-frequency behaviour of corner singularities in Helmholtz problems. ESAIM: Math. Model. Numer. Anal. 52, pp 1803-1845. 2018. (preprint)
    8. T. Chaumont-Frelet, D. Pardo and A. Rodriguez-Rozas. Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids. Comput. Goesci. 22, pp 1161--1174, 2018. (preprint)
    9. T. Chaumont-Frelet, S. Nicaise and D. Pardo. Finite element approximation of electromagnetic fields using non-fitting meshes for geophysics. SIAM J. Numer. Anal. 56, pp 2288-2321. 2018. (preprint)
    10. H. Barucq, T. Chaumont-Frelet and C. Gout. Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation. Math. Comp. 86, pp 2129-2167. 2017. (preprint)
    11. T. Chaumont-Frelet. On high order methods for the heterogeneous Helmholtz equation. Comput. Math. Appl. 72, pp 2203-2225. 2016. (preprint)
    12. H. Barucq, T. Chaumont-Frelet, J. Diaz and V. Péron. Upscaling for the Laplace problem using a discontinuous Galerkin method. J. Comput. Appl. Math. 240, pp 192-203. 2013.


    1. G. Nehmetallah, T. Chaumont-Frelet, S. Descombes, and S. Lanteri A postprocessing technique for a discontinuous Galerkin discretization of time-dependent Maxwell's equations. (preprint)
    2. T. Chaumont-Frelet and P. Vega Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations. (preprint)
    3. T. Chaumont-Frelet and M. Vohralík Equivalence of local-best and global-best approximations in H(curl). (preprint)
    4. T. Chaumont-Frelet, A. Ern and M. Vohralík Stable broken H(curl) polynomial extensions and p-robust quasi-equilibrated a posteriori estimators for Maxwell's equations. (preprint)
    5. T. Chaumont-Frelet, A. Ern and M. Vohralík Polynomial-degree-robust H(curl)-stability of discrete minimization in a tetrahedron. (preprint)
    6. T. Chaumont-Frelet, B. Verfürth A generalized finite element method for problems with sign-changing coefficients. (preprint)
    7. T. Chaumont-Frelet, A. Ern and M. Vohralík On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation. (preprint)
    8. T. Chaumont-Frelet, D. Gallistl, S. Nicaise and J. Tomezyk Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers. (preprint)