Zakaria Kassali (Ph.D. student since 01/11/2019, co-supervision with Stéphane Lanteri)
Patrick Vega (Postdoc fellow since 01/12/2019, co-supervision with Stéphane Lanteri)
Publications
V. Darrigrand, D. Pardo, T. Chaumont-Frelet, I. Gomez-Revuelto, L.E. Garcia-Castillo
A painless automatic hp-adatptive strategy for elliptic probems.
Accepted for publication in Finite Elem. Anal. Des. on the 24/05/2020
(preprint)
T. Chaumont-Frelet and F. Valentin
A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains.
Accepted for publication in SIAM J. Numer. Anal. on the 16/12/2019
(preprint)
T. Chaumont-Frelet
Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers.
Accepted for publication in Calcolo on the 06/11/2019
(preprint)
T. Chaumont-Frelet, S. Nicaise and J. Tomezyk
Uniform a priori estimates for elliptic problems with impedance boundary conditions.
Accepted for publication in Comm. Pure Appl. Math. on the 18/09/2019.
(preprint)
T. Chaumont-Frelet and S. Nicaise
Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems.
Accepted for publication in IMA J. Numer. Anal. on the 18/03/2019.
(preprint)
T. Chaumont-Frelet, M. Shahriari and D. Pardo
Adjoint-based formulation for computing derivatives with respect to bed boundary positions in resistivity geophysics.
Comput. Goesci. 23, pp 583--594, 2019.
(preprint)
T. Chaumont-Frelet and S. Nicaise.
High-frequency behaviour of corner singularities in Helmholtz problems.
ESAIM: Math. Model. Numer. Anal. 52, pp 1803-1845. 2018.
(preprint)
T. Chaumont-Frelet, D. Pardo and A. Rodriguez-Rozas.
Finite element simulations of logging-while-drilling and extra-deep azimuthal resistivity measurements using non-fitting grids.
Comput. Goesci. 22, pp 1161--1174, 2018.
(preprint)
T. Chaumont-Frelet, S. Nicaise and D. Pardo.
Finite element approximation of electromagnetic fields using non-fitting meshes for geophysics.
SIAM J. Numer. Anal. 56, pp 2288-2321. 2018.
(preprint)
H. Barucq, T. Chaumont-Frelet and C. Gout. Stability analysis of heterogeneous Helmholtz
problems and finite element solution based on propagation media approximation.
Math. Comp. 86, pp 2129-2167. 2017.
(preprint)
T. Chaumont-Frelet.
On high order methods for the heterogeneous Helmholtz equation.
Comput. Math. Appl. 72, pp 2203-2225. 2016.
(preprint)
H. Barucq, T. Chaumont-Frelet, J. Diaz and V. Péron.
Upscaling for the Laplace problem using a discontinuous Galerkin method.
J. Comput. Appl. Math. 240, pp 192-203. 2013.
Prepublications
G. Nehmetallah, T. Chaumont-Frelet, S. Descombes, and S. Lanteri
A postprocessing technique for a discontinuous Galerkin discretization of time-dependent Maxwell's equations.
(preprint)
T. Chaumont-Frelet and P. Vega
Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations.
(preprint)
T. Chaumont-Frelet and M. Vohralík
Equivalence of local-best and global-best approximations in H(curl).
(preprint)
T. Chaumont-Frelet, A. Ern and M. Vohralík
Stable broken H(curl) polynomial extensions and p-robust quasi-equilibrated a posteriori estimators for Maxwell's equations.
(preprint)
T. Chaumont-Frelet, A. Ern and M. Vohralík
Polynomial-degree-robust H(curl)-stability of discrete minimization in a tetrahedron.
(preprint)
T. Chaumont-Frelet, B. Verfürth
A generalized finite element method for problems with sign-changing coefficients.
(preprint)
T. Chaumont-Frelet, A. Ern and M. Vohralík
On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation.
(preprint)
T. Chaumont-Frelet, D. Gallistl, S. Nicaise and J. Tomezyk
Wavenumber explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers.
(preprint)